II PU SATISTICS - 2024

31 (NS)

Instructions:

(English Version)

- 1. Statistical table and Graph sheets will be supplied on request.
- Scientific calculators are allowed.
- 3. All working steps should be clearly shown.
- 4. For Section-A, only the first written answers will be considered for evaluation.
- For questions having diagram, graph and map, alternative questions are given at the end of the question paper in a separate section for visually challenged students.

SECTION - A

Choose the correct answer from the choices given :

 $(5 \times 1 = 5)$

- Life expectancy of a newborn baby
 - a) Mortality
- b) Longevity

c) Fertility

- d) Fecundity
- The weights used in the construction of Marshall-Edgeworth's price index number
 - a) q_0

- b) q_1
- c) $\left(\frac{q_0 + q_1}{2}\right)$
- d) $(q_0 + q_1)$
- 3) The variance of a χ^2 distribution with 12 degrees of freedom is 24. Then its mean is
 - a) 72

b) 2

0.5

d) 12

31 (NS)

- 4) Type I error is
 - a) Rejecting H_0 when it is true
 - b) Accepting H_0 when it is true
 - c) Rejecting H_0 when it is not true
 - d) Accepting H_0 when it is not true
- 5) The game is said to be fair, if the value of the game is
 - a) V > 0

b) V = 0

c) V < 0

- d) $V \neq 0$
- II. Fill in the blanks by choosing the appropriate answer from those given in the brackets: $(5 \times 1 = 5)$

$$\left(\frac{1}{2}, d_2\sigma', \text{ Geometric mean, } \sqrt{\frac{PQ}{n}}, \text{ first, } \overline{R}\right)$$

- 6) The best average used in the construction of index number ————
- 7) Binomial distribution is positively skewed when p <
- Standard error of the sample proportion is ————
- 9) For R-chart if σ' is known, then ———— is the central line.
- 10) The feasible solution to the L.P.P exists in ———— quadrant.

III. Match the following.

 $(5\times 1=5)$

Α

11) Deaths of new born

a) Lepto Kurtic ($\beta_2 > 3$)

В

- babies within 28 days
- Index number which doesn't satisfy unit test
- b) $1-\beta$
- 13) Student's t-distribution curve
- c) C_2

14) Power of a test

d) Neonatal deaths

15) Shortage cost

- e) Simple aggregative price index number
- f) P (Type I error)

IV. Answer the following questions:

 $(5\times 1=5)$

- 16) Write one use of vital statistics.
- 17) Define secular trend.
- 18) A normal variate has mean 150 and variance 25. Find the standard deviation.
- 19) Define rejection region.
- 20) When is the solution to the transportation problem said to be non-degenerate?

SECTION - B

 $(5 \times 2 = 10)$

- V. Answer any five of the following questions:
 - 21) Define irregular variation and give an example.
 - 22) Write two conditions for applying binomial expansion method of interpolation and extrapolation.
 - 23) Write down the Bernoulli distribution probability mass function with the parameter $p = \frac{2}{5}$.
 - 24) If z_1 and z_2 are two independent S.N.Vs then name the distribution of $(z_1^2 + z_2^2)$ and write its mean.
 - 25) Define parameter and statistic.
 - 26) Given: $n_1 = 100$, $n_2 = 60$, $P_1 = 0.4$ and $P_2 = 0.8$. Find S.E. $(p_1 p_2)$.
 - 27) In statistical quality control, what are defect and defectives?
 - 28) Given : R = 5000 items/year, $C_3 = ₹ 50$ /cycle, $C_1 = ₹ 2$ /item/year. Calculate minimum average inventory cost.

SECTION - C

VI. Answer any four of the following questions:

 $(4 \times 5 = 20)$

29) Construct a suitable index number for the following data and comment.

Prid		
2018	2023	Quantity 2023
20	40	10
25	32	3
18	30	5
80	100	3
	2018 20 25 18	20 40 25 32 18 30

30) Interpolate the value of Y when X = 25, using Newton's forward difference method for the following data.

X	10	20	30	40
Y	13	15	19	25

- 31) In a class 60% of the students are boys. In a random sample of 5 students, find the probability that (a) 2 are boys (b) atleast one is a boy.
- 32) A box contains 5 blue and 7 pink marbles. 5 marbles are drawn at random. What is the probability that the sample contains 2 pink marbles? Also find the mean number of pink marbles.
- 33) A sample of 100 students is chosen from a large group of students. The average height of these students is 162 cm. and standard deviation is 8 cm. At $\alpha = 5\%$, can we reasonably assume that the average height of large group of students is 160 cm?
- 34) Five students were given an intensive coaching and 2 tests were conducted before and after coaching, the change in their marks are as

2, 0, 5, -2, 3

Do the scores after coaching show an improvement? Use $\alpha = 5\%$.

35) For the following transportation problem, find the initial basic feasible solution by North-West corner rule. Compute the total transportation cost.

)eale	ers	
		D_1	D_2	D_3	Availability
	O ₁	8	4	12	50
Factory	<i>O</i> ₂	10	5	6	20
	O_3	7	15	3	10
Demand		40	20	20	

31 (NS)

36) The price of a machine is ₹ 3,000. Its maintenance cost and resale value at different ages are given below :-

	· · · · · · · · · · · · · · · · · · ·						_
1	Year	1	2	3	4	5	6
1	Teal	·				4500	4000
1	Maintenance cost (₹)	1000	1100	1150	1300	1500	1900
1	Maintenance cost ()				200	500	450
	Resale value (₹)	1750	1250	850	600	500	450
	Nesale value (1)						

What is the annual average cost? When the machine be replaced?

VII. Answer any two of the following questions.

$$(2 \times 5 = 10)$$

- 37) The daily wages of workers of a factory are normally distributed with mean ₹ 500 and standard deviation ₹ 40. Find the probability of worker whose daily wage will be (a) more than ₹ 530 (b) between ₹ 380 and ₹ 460.
- 38) Following expected frequencies are obtained after fitting binomial distribution by estimating the parameter.

O _i	,29	37	45	62	50	27
Ei	7	35	75	81	43	9

Test whether binomial distribution is a good fit at $\alpha = 1\%$.

- 39) In a fish net manufacturing process, the average number of defects per square meter is known to be 3. Determine the control limits for the number of defects.
- 40) Solve the following linear programming problem graphically.

Maximise
$$Z = 5x + 10y$$

Subject to constraints : $5x + 4y \le 40$

$$3x + 4y \ge 24$$

and $x \ge 0$, $y \ge 0$.

SECTION - D

VIII. Answer any two of the following questions :

 $(2 \times 10 = 20)$

41) Calculate gross reproduction rate and net reproduction rate for the following data and comment on the result.

Age group	Female	Female	Survival
(in years)	population	births	ratio
15-19	50,000	1,000	0.91
20-24	60,000	7,000	0.90
25-29	45,000	8,000	0.89
30-34	40,000	5,000	0.88
35-39	30,000	3,000	0.87
40-44	25,000	1,000	0.86
45-49	20,000	100	0.85

42) a) Compute the cost of living index number for the following data. (5)

		Price (in ₹)		
Group	Weight	Base Year	Current Year	
Food	5	1600	2400	
House rent	10	4000	5000	
Clothing	3	800	1000	
Fuel and lighting	4	100	400	
Others	5	1600	2000	

31 (NS)

Compute value index number from the following data. Comment on the result b) the result.

, ditt						
	2	018	2020			
Item	Price	Quantity (kg)	Price (₹)	Quantity (kg)		
A		8	60	10		
		4	100	5		
		6	60	6		
	30	5	50	7		
	Item A B C	2 Price (₹) A 50 B 80 C 70	2018 Price Quantity (kg) A 50 8 B 80 4 C 70 6	2018 2 2 2 2 2 2 2 2 2		

43) Fit a second degree parabola of the type $y = a + bx + cx^2$ by the method of least squares to the following time series. Estimate the value for 2020.

Year	2010	2012	2014	2016	2018
Value	14	12	11	10	13

SECTION - E

(For Visually Challenged Students only)

40) Write the procedure of solving linear programming problem graphically.