

M - 2024

5				
Register Number:	19.79			
realistic Multipet.		1 (1	to far II	

Subject Code: 33

PHYSICS

Time: 3 Hours 15 Minutes]

[Total No. of questions: 48]

[Max. Marks: 70

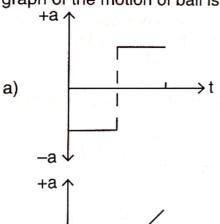
Instructions:

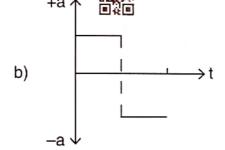
1) All Parts are compulsory.

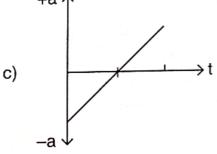
- 2) For Part A questions, first written answers will be considered for awarding marks.
- 3) Answers without relevant diagram/figure/circuit, wherever necessary will not carry any marks.
- 4) Direct answers to the numerical problems without detailed solution will **not** carry **any** marks.

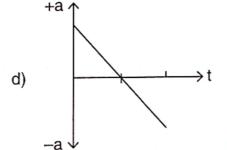
PART - A

- I. Pick out the correct option among the four given options for all of the following questions: (15×1=15)
 - 1) The dimensional formula of pressure is


a) $[MLT^{-2}]$


b) $[ML^2 \dot{T}^{-2}]$


c) $[ML^{-1}T^{-2}]$


d) [MLT⁻³]

2) A ball is thrown vertically upward and allowed to move freely under gravity, the a-t graph of the motion of ball is

P.T.O.

	٥,	iri a projectile mo	tion, the horizon	tal rar	nge is maximum	1 for	angle c	of projectio	n
		a) 0°The product of for	b) 45°		60°) 90°		
		a) Force The recoil of a gu	b) Torque	c) for co	Impulse	d) Acce	eleration	
		a) Mass The scalar produc	b) Charge	c)	Energy	d) ngle	Mom	entum en two vec	tors is
		a) 0°Consider a system has an acceleration	b) 45° of two identical	c) partic	90° les, one of the p	d) artic	180° le is at		
		a) zero	b) $\frac{a}{2}$	c)	а	d)	2a		
) (The value of gravi a) 6.67×10^{-10} N c) 6.67×10^{-12} N Which of the follov (i) Putty (ii) Mud iii) Steel	m ² kg ⁻² m ² kg ⁻²	b) d)	6.67 × 10 ^{–13} Nr	n ² kc	1-2		
11)) [V y c T	a) (i) and (ii) Dynamic lift due to a) Magnus effect c) Pascal's effect When a piece of iro rellow and finally w a) Stefan's – Boltz c) Wien's displace the efficiency of a 0 7°C is	spinning of a ba n is heated in a h hite hot. This ph mann's law ment law	Il is b) [d) 7 ot flar enom b) (d) N	Doppler's effect Forricelli effect me, it first becom lenon can be ex Green house eff Newton's law of	es di plain ect cooli	ull red, ed by	then reddis	
13)	a T) 0.25 he total internal er	b) 0.5 ergy of a mono	c) 0 atomi	c gas is	d)	1.0		
	Tha)	1 K _B T 2 ne motion which re Projectile motion Periodic motion ne longitudinal way Shear modulus Young's modulus	res in a medium	b) C d) N propa	curvilinear motio	e is c n ion		S	

II. Fill in the blanks by choosing appropriate answer given in the brackets for all the (Surface tension, 180°, Vector, Elliptical, 90°, Absolute temperature) 16) A physical quantity having both magnitude and direction is called $(5 \times 1 = 5)$ 17) All planets move in _____ orbits with sun situated at one of the foci. 18) The spherical shape of a liquid drop is due to 19) At constant pressure, the volume of a gas is directly proportional to its 20) At rigid boundary, there is a phase difference of ______ between incident III. Answer any five of the following questions : PART - B 21) Write any two rules of writing significant figures. $(5 \times 2 = 10)$ 22) A stone tied at one end of a string 80 cm long and is whirled in a horizontal circle with constant speed. If the frequency of revolution of stone is 2 Hz., then calculate magnitude of tangential velocity. 23) Write any two advantages of friction. 24) What are conservative and non-conservative forces? 25) Mention the expression for kinetic energy of a rotating body and explain the terms. 26) State and explain Newton's law of gravitation. 27) Mention any two factors on which thermal capacity of a body depends. 28) State and explain first law of thermodynamics. 29) Draw a graph of kinetic energy and potential energy of an oscillating particle with displacement. PART - C IV. Answer any five of the following questions: $(5 \times 3 = 15)$ 30) Derive an expression for time taken to reach maximum height by a projectile. 31) Prove law of conservation of linear momentum using Newton's laws of motion. 32) Derive an expression for potential energy of a spring by graphical method. 33) To maintain a rotor at a uniform angular speed of 120 rads⁻¹. Engine needs to transmit a torque of 180 Nm. What is the power required by the engine? 34) Define:

i) Longitudinal strain 面景

ii) Shear strain

35) Distinguish between streamline flow and turbulent flow. 36) On what factors does the rate of transfer of heat through a conductor depends?

Write Newton's formula for speed of sound in gas and give Laplace correction 37)

to Newton's formula. 38)

PART - D

V. Answer any three of the following questions:

 $(3 \times 5 = 15)$

- 39) Derive the kinematic equation of uniformly accelerated motion, $v^2 = v_0^2 + 2ax$, using v-t graph, where terms have their usual meaning.
- 40) Derive an expression for magnitude and direction of resultant of two vectors acting at a point.
- 41) Prove law of conservation of mechanical energy in case of freely falling body.
- 42) a) Define torque.

b) Obtain the relation $\bar{\tau} = \frac{d\bar{L}}{dt}$.

4

43) a) What is isothermal process?

- b) Obtain an expression for work done in isothermal process.
- 4
- 44) Show that a stretched string vibrates with all harmonics.
- VI. Answer any two of the following questions:

 $(2 \times 5 = 10)$

- 45) A ship of mass 3×10^7 kg initially at rest is pulled by a force of 5×10^4 N through a distance of 3 m. Assuming that resistance of water is negligible, find the speed of the ship after travelling 3 m distance.
- 46) Calculate the orbital velocity and period of revolution of an artificial satellite of the earth moving at an altitude of 200 km. Given,

Radius of the earth = 6400 km Mass of the earth = 6×10^{24} kg $G = 6.7 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$.

- 47) A body cools from 80°C to 50°C in 5 minute. Calculate the time it takes to cool from 60°C to 30°C. The temperature of surrounding is 20°C.
- 48) A body oscillates with SHM according to the equation, $x = 5\cos\left(2\pi t + \frac{\pi}{4}\right)m$. At t = 1.5 s, calculate (a) displacement, (b) speed and (c) acceleration of the body.