Register Number :

Subject Code: 34

CHEMISTRY

Time: 3 Hours 15 Minutes]

[Total No. of questions: 52]

[Max. Marks: 70

Instructions:

- 1. Question paper has five Parts having 52 questions. All Parts are compulsory.
- 2. a) Part A carries 20 marks. Each question carries 1 mark.
 - b) Part B carries 10 marks. Each question carries 2 marks.
 - c) Part C carries 18 marks. Each question carries 3 marks.
 - d) Part D carries 10 marks. Each question carries 5 marks.

- e) Part E carries 12 marks. Each question carries 3 marks.
- In Part A questions, first attempted answer will be considered for awarding marks.
- 4. Write balanced chemical equations and draw neat labelled diagrams and graphs wherever necessary.
- 5. Direct answers to the numerical problems without detailed steps and **specific** unit for final answer will **not** carry any marks.
- Use log tables and simple calculator if necessary. (Use of scientific calculator is not allowed).

PART - A

I. Select the correct option from the given choices:

(15×1=15)

- 1) The SI unit of temperature is
 - A) °C
- B) °F
- C) K

- D) Kg
- 2) The number of moles of solute present in one litre of solution is called
 - A) molality
- B) molarity
- C) mole fraction
- D) mass percent

- 3) Isobars in the following pair is
 - A) ³⁵₁₇Cl and ³⁷₁₇Cl

- B) ${}_{6}^{12}$ C and ${}_{6}^{13}$ C

C) ${}^{14}_{6}$ C and ${}^{14}_{7}$ N

D) ${}^{12}_{6}$ C and ${}^{14}_{6}$ C

- 4) Out of the options given below, choose the correct order of atomic/ionic radii of sodium (Na) atom and sodium ion (Na+) in pm B) 186, 95 A) 95, 186 D) 186, 186 C) 95, 95 5) Which of the following angle corresponds to sp² hybridisation? D) 109° C) 180° A) 90° B) 120° 6) The molecule with an odd number of electron is A) NO B) H₂O D) PF_{5} C) BCl₃ C_p and C_v are related as A) $C_p - C_v = R$ B) $C_p + C_v = R$ C) $C_p / C_v = R$ D) $\frac{C_v}{C_p} = R$ 8) A reaction, $A + B \rightarrow C + D$ is found to be exothermic with positive entropy change. The reaction will be A) Spontaneous only at high temperature
 - C) Non-spontaneous at any temperature

B) Spontaneous only at low temperature

- D) Spontaneous at all temperatures
- 9) For acidic solution, the correct one is

A)
$$[H_3O^+] > [OH^-]$$

B) $[H_3O^+] = [OH^-]$

C)
$$[H_3O^+] < [OH^-]$$

D) $[H_3O^+] \le [OH^-]$

- 10) Dissociation of acetic acid in the following equilibrium, $CH_3COOH_{(aq)} \rightleftharpoons H_{(aq)}^+ + CH_3COO_{(aq)}^-$ is suppressed by
 - A) decreasing the concentration of H⁺ ions
 - B) increasing the concentration of H+ ions
 - C) decreasing the concentration of CH₃COO⁻ ions
 - D) decreasing both concentrations of H⁺ and CH₃COO⁻ ions
- 11) Oxidation number of sodium in sodium chloride is
 - A) + 2
- B) +1
- C) 0

D) -1

	Lagrangiano's test for -it			04
12	In the Lassaigne's test for nitrogen in an organic compound, the Prussian blue colour is obtained due to the formation of			
	A) $Na_4[Fe(CN)_6]$	B) Fe ₃ [Fe(CN) ₆] ₄		
	C) $Fe_2[Fe(CN)_6]$	D) $Fe_4[Fe(CN)_6]_3$	177.0	
13	The first organic compound synthesised by F. Wohler in 1828 is			
	A) Methane B) Acetic acid		D) Ben <mark>zen</mark> e	
14	Arrange the following in the increasing order of their boiling points:			
	i. Pentane			
	ii. 2-methylbutane			
	iii. 2, 2-dimethylpropane.			
	A) $iii < ii < i$ B) $i < ii < iii$			
15	Alkenes are prepared from vicinal dihalides on treating with zinc, the reaction is known as			
	A) dehalogenation	B) dehydration		
	c) dehydrohalogenation	D) halogenation	to the bree	koto :
II. Fill in the blanks by choosing the appropriate word from those given in the brackets: (5x1=5) (constant, propan-2-ol, 4, 2-Bromopropane, zero, 2)				
	$\frac{1}{2}$			
17	According to the first law of thermodynamics, 2009			
18	298 K, if pH of the solution is 10, then its pOH is			
19) Position isomer of propan-1-01 (C31180)				
20) The addition of HBr to propene give	.5	10 (64) 10 (64)	
	PAF	₹T – B	and the Co	(5×2=10)
111 .	wer any five of the following. Each question carries two marks.			
Answer any five of the following.				
21) Define open system. Give an example for an open system.				na '
22	Define open system. Give an example for an acidic buffer. What are buffer solutions? Give an example for an acidic buffer. 2 Select the isoelectronic pair from the following:			
23	What are buffer solutions? Give an example for an acidic band. What are buffer solutions? Select the isoelectronic pair from the following: What are isoelectronic species? Select the isoelectronic pair from the following:			
	F ⁻ , Li ⁺ , O ²⁻ , H ⁺ .			
	, = , 0 , 11 .			

- 24) Give reason:
 - i) Dipole moment of BeF₂ is zero.
 - ii) σ bonds are stronger than π bonds.
- 25) Write any two differences between Bonding Molecular Orbital (BMO) and Antibonding Molecular Orbital (ABMO).
- 26) Using stock notation, represent the following compounds:
 - i) Cul
- ii) Fe₂O₃
- 27) For the compound 2-Bromobutane, write the complete structural formula and bond-line formula.
- 28) What are nucleophiles? Give an example.
- 29) Explain Wurtz reaction. Write the equation for the preparation of ethane by this method.

PART - C

IV. Answer any three of the following. Each question carries three marks.

 $(3 \times 3 = 9)$

- 30) Define electron gain enthalpy. How does it vary across a period and down the group?
- 31) What is hydrogen bonding? Mention the types of hydrogen bonding.
- 32) For H₂ molecule,
 - i) Write the electronic configuration.
 - ii) Calculate the bond order.
 - iii) State its magnetic property.

- 33) Explain sp hybridisation by taking BeCl₂ as an example.
- 34) Balance the ionic equation by oxidation number method.

$$\mathsf{MnO}^-_{4_{(aq)}} + \mathsf{Fe}^{2+}_{(aq)} \to \mathsf{Mn}^{2+}_{(aq)} + \mathsf{Fe}^{3+}_{(aq)} \ \ \text{(in acidic medium)}$$

V. Answer any three of the following. Each question carries three marks.

 $(3 \times 3 = 9)$

- 35) a) Round up 1.074547 upto three significant figures.

- b) Define limiting reagent.
- 36) Write any three postulates of Bohr's atomic theory.
- 37) In 2p orbital, identify the following:
 - i) Number of angular nodes
 - ii) Number of radial nodes
 - iii) Total number of nodes.

- - $_{38)}$ Explain the measurement of ΔU using bomb calorimeter.
 - 39) State Le Chatelier's principle. What is the effect of temperature on equilibrium constant
 - Define conjugate acid-base pair. Mention the conjugate acid of NH3 and conjugate base of H₂O.

PART - D

VI. Answer any two of the following. Each question carries five marks.

 $(2 \times 5 = 10)$

- 41) a) How do you detect the presence of carbon and hydrogen in an organic compound by copper oxide method?
 - b) Mention any two methods of purification of organic compounds.
- 42) a) What is resonance effect? Give an example each for groups showing +R and -R effect.
 - b) Name the species formed during
 - i) Homolytic cleavage of covalent bond.

- ii) Heterolytic cleavage of covalent bond.
- 43) a) Draw the Sawhorse projection formulae of eclipsed and staggered conformations of ethane. Which conformation is most stable?
 - b) How is acetylene (Ethyne) prepared from calcium carbide?
- 44) a) Explain the mechanism of nitration of benzene.
 - b) Identify the products A and B in the following reactions:

i)
$$CH_2 = CH_2 + Br_2 \xrightarrow{CCl_4} A$$

ii) $CH_3CH_2CI \xrightarrow{alc.KOH} B$

PART - F

 $(4 \times 3 = 12)$

VII. Answer any four of the following. Each question carries three marks.

45) Determine the empirical formula of an oxide of iron which has 69.9% iron and 30.1% oxygen by mass

oxygen by mass. (Given : Atomic mass of iron is 56u and oxygen is 16u)

46) Calculate the mass percentage of all the elements present in the compound carbon dioxide.

(Given : Atomic mass of C = 12 u and O = 16u)

- 47) Calculate the energy of one mole of photons of radiation whose frequency is $5 \times 10^{14} \, \text{Hz}.$ (Given : $h = 6.626 \times 10^{-34}$ Js, Avogadro number = 6.022×10^{23} mol⁻¹).
- 48) A microscope using suitable photons is employed to locate an electron in an atom within a distance of 0.1Å. What is the uncertainty involved in the measurement of velocity? (Given : Mass of electron = 9.11×10^{-31} kg)

49) Calculate the standard enthalpy of combustion $(\Delta_c H^\Theta)$ of benzene from the following data:

$$\begin{split} &C_{(graphite)} + O_{2(g)} \to CO_{2(g)} \; ; \Delta_f H^\Theta = -393.5 \; \text{kJmol}^- \\ &H_{2(g)} + \frac{1}{2} O_{2(g)} \to H_2 O_{(l)} \; ; \Delta_f H^\Theta = -286.0 \; \text{kJmol}^{-1} \\ &6 C_{(graphite)} + 3 H_{2(g)} \to C_6 H_{6(l)} \; ; \Delta_f H^\Theta = +48.5 \; \text{kJmol}^{-1} \end{split}$$

- 50) For the reaction,
 - $2A_{(g)} + B_{(g)} \rightarrow 2D_{(g)}$; $\Delta H^{\Theta} = -12.98 \text{ kJmol}^{-1}$ and $\Delta S^{\Theta} = -44.1 \text{ JK}^{-1} \text{mol}^{-1}$ at 298 K. Calculate ΔG^{Θ} for the reaction and predict whether the reaction is spontaneous or non-spontaneous.
- 51) K_a of HF is 0.00068. Calculate the dissociation constant of its conjugate base (K_b) at 298 K.
- 52) For the equilibrium, $2 \text{ NOCl}_{(g)} \rightleftharpoons 2 \text{ NO}_{(g)} + \text{Cl}_{2_{(g)}}$

the value of the equilibrium constant, K_c is 3.75×10^{-6} at 1069 K. Calculate the $K_{\rm p}$ for the reaction at the same temperature.

(Given :
$$R = 0.0831$$
 bar L mol⁻¹K⁻¹)