ನೋಂದಣಿ ಸಂಖ್ಯೆ :				. *		
Registration No. :)	 				

A1 - 2024

ವಿಷಯ ಸಂಕೇತ / 40 (NS) **Subject Code**

ಎಲೆಕ್ಟ್ರಾನಿಕ್ಸ್ (ವಿದ್ಯುನ್ಮಾನ ವಿಜ್ಞಾನ) / ELECTRONICS

[ಸಮಯ: 3 ಗಂಟೆ 15 ನಿಮಿಷಗಳು]

[ಒಟ್ಟು ಪ್ರಶ್ನೆಗಳ ಸಂಖ್ಯೆ: 48] [ಗರಿಷ್ಠ ಅಂಕಗಳು: 70]

[Time: 3 Hours 15 Minutes]

[Total No. of questions: 48] [Max. Marks: 70]

- Instructions: 1) For Part – A questions, only the first written answers will be considered for evaluation.
 - 2) Part – D consists of two sections. Section – I is of essay type questions. Section – II is of problems.
 - For questions having diagrams, alternate questions are 3) given at the end of the question paper, in a separate Section for Visually Challenged Students.
 - Truth table and circuit diagram must be drawn wherever 4) necessary.
 - Solve the problems with necessary formulae. 5)

PART - A

Select the correct answer from the choices given : ١.

 $(15 \times 1 = 15)$

- The relation between μ , r_{d} and g_{m} in JFET is 1)
 - a) $r_d = \mu \cdot g_m$

b) $g_m = \mu \cdot r_d$

c) $\mu = g_m \cdot r_d$

d) $\mu = \frac{g_m}{r_d}$

c)

Ionosphere

2	2) T	he transistor biasing cir	cuit which pro	vides better stabilization
	a	Voltage divider bias	b)	Emitter feedback bias
	c)	Collector feedback b	oias d)	Fixed bias
•				
3		ne power amplifier thro put Signal	ough which c	urrent flows for only half cycle of
	a)	Class A	b)	Class B
	c)	Class C	d)	Class AB
4)		hat happens to the vogative feedback is appl		an amplifier, when voltage series
	a)	Remains same	b)	Decreases
	c)	Increases	d)	Oscillates
5)	Nu	mber of op-amp in IC 7	'41 is	
	a)	2	b)	4
	c)	1	d)	3
6)	A s	pecial case of non inve	erting operatio	nal amplifier in which $V_O = V_i$
	a) ,	Buffer	b)	Integrator
	c)	Differentiator	d)	Logarithmic amplifier
7)	Con	ditions for sustained o	scillations	
:	a)	AB < 1 $ AB = 0$	b)	AB > 1 AB = 1
	c) ,	AB = 0	d)	AB = 1
8)	The	layer of atmosphere w	hich reflects	the radio waves
	a)	Troposphere	b)	Stratosphere

d)

Mesosphere

AM wave is distorted wh	en
---	----

a) $m_{a} = 0$

b) $m_a = 1.5$

c) $m_s = 0.5$

d) $m_a = 1$

10) The common name of SCR

a) TRIAC

b) BJT

c) Thyristor

d) MOSFET

11) The logic expression for X-OR gate

a) A·B

b) A⊕B

c) A + B

d) A⊕B

12) 8421 BCD code for [52],

a) 10101111

b) 01010010

c) 01000111

d) 10001000

13) Bits of data hold by Register A of 8051

a) 64 bits

b) 32 bits

c) 16 bits

d) 8 bits

14) The size of a float data type in C program

a) 4 bytes

b) 8 bytes

c) 1 byte

d) 2 bytes

15) The standard form of MTSO

- a) Mobile Telephone Switching Office
- b) Mobile Technology Switching Office
- c) Mobile Technology Switching Offer
- d) Mobile Technology System Office

11,	Fill in	the	blanks	by	choosing	appropriate	answer	from	those	given (5 ×	1	= 5)
	bracke	et:										

- [a) unity b) amplitude c) universal d) biasing e) electrons f) feedback]
- 17) Applying suitable voltage across the terminals of a transistor is called
- 18) The current gain of CB amplifier is nearly —————
- In frequency modulation ———— of the carrier wave remains same.
- NAND gate is also known as ———— gate.

PART - B

III. Answer any five questions:

 $(5 \times 2 = 10)$

- 21) What is heat sink? Why it is used?
- Draw the DC equivalent circuit for CE amplifier.
- 23) The loop gain A β of a negative feedback amplifier is 20. If BW = 10 KHz find the bandwidth of an amplifier with feedback (BW $_{\rm f}$).
- 24) A Wien bridge oscillator has $R_1=R_2=1\,k\Omega$ and $C_1=C_2=0.1\,\mu F$. Determine the frequency of oscillations.
- 25) Write the symbol of power diode and draw V-I characteristics curve in forward bias mode.
- 26) Write the truth table of full adder.

- Distinguish between RAM and ROM.
- 28) Mention any two types of operators in C program.
- 29) Compare Wifi with bluetooth.

PART - C

5-

IV. Answer any five questions :

 $(5 \times 3 = 15)$

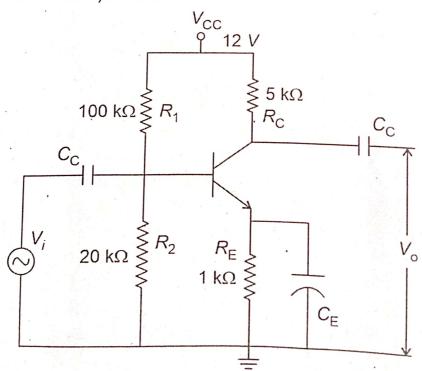
- Mention the differences between FET and BJT.
- 31) Write any three advantages of negative feedback in amplifier.
- 32) What is piezoelectric effect? Draw the circuit diagram of crystal oscillator.
- 33) Determine the frequency of Hartley oscillator, when $L_1 = 2 \text{ mH}$, $L_2 = 4 \text{ mH}$ and C = 10 nF.
- 34) Draw the block diagram of basic communication system and explain each block.
- 35) Mention the characteristics of good Radio receiver.
- 36) Determine V_{dc} and I_{dc} of SCR-HWR. Given firing angle is 0° and rms voltage of ac input to the rectifier is 230 V and load is $10~\Omega$.
- 37) Convert $Y = AB + \overline{B}C$ into canonical SOP form.
- 38) Mention any three uses of Satellite Communication.

PART - D (Section I)

Answer any three questions:

 $(3 \times 5 = 15)$

- 39) With circuit diagram, input and output waveforms, explain the working of two stage RC coupled CE amplifier.
- 40) With circuit diagram, derive an expression for output voltage of op-amp differentiator.

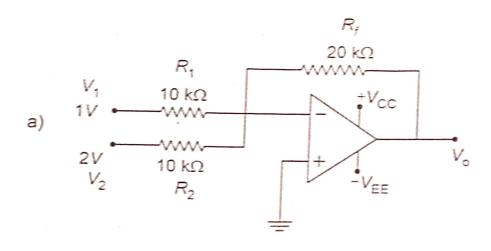

- 41) Draw the block diagram of superheterodyne AM receiver with necessary waveforms. Explain the function of each block briefly.
- 42) What is flip-flop? Draw the circuit of clocked SR flip flop and write its truth table.
- 43) Write assembly language program to add 1 AH and 05 H. Save the result in R0. What is the content of R0 after execution of the program?
- 44) Write a C program to accept radius in float and print area of the circle.

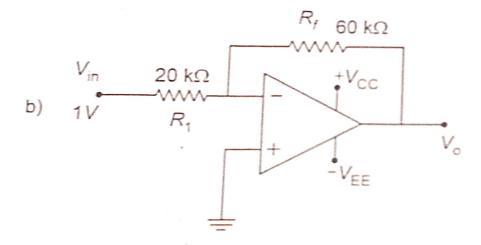
PART - D (Section II)

VI. Answer any two questions:

 $(2 \times 5 = 10)$

45) For the transistor CE amplifier circuit given below : Calculate (a) Z_o (b) $Z_{i\,(\text{base})}$ (c) A_v (d) A_i and (e) A_p . Given $I_E=1.3$ mA , $r_e'=\frac{26\,\text{mV}}{I_E}$, $V_{BE}=0.7\,\text{V}$ and $\beta=100$.





40 (NS)

46) Find the o/p voltage for the op-amp circuits given below.

(3 + 2)

- 47) AM transmitter with carrier power of 12 kilowatt is modulated to a depth of 100%. Calculate
 - (a) Total power
 - (b) Side band power
- 48) Simplify the boolean expression $Y = \sum m(0, 3, 4, 7, 8, 11, 12) + \sum d(14, 15)$ using K map. Realise the simplified expression using basic gates only.

PART - E

(For Visually Challenged Students Only)

- 45) A transistor CE amplifier is given with $R_{_1}$ = 100 k Ω , $R_{_2}$ = 20 k Ω , $R_{_C}$ = 5 k Ω , $R_{_E}$ = 1 k Ω , $V_{_{CC}}$ = +12 V, $V_{_{BE}}$ = 0.7 V, $I_{_E}$ = 1.3 mA, $r_{_e}'$ = $\frac{26\,\text{mV}}{I_{_E}}$, $I_{_E}$ = 100. Calculate (a) $I_{_D}$ (b) $I_{_{_{I}}}$ (b) $I_{_{_{I}}}$ (c) $I_{_{_{I}}}$ (d) $I_{_{_{I}}}$ and $I_{_{_{I}}}$ (e) $I_{_{_{I}}}$
- 46) a) An op-amp adder circuit is given with $R_1 = 10 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_1 = 20 \text{ k}\Omega$, $V_1 = 1 \text{ V}$, $V_2 = 2 \text{ V}$. Determine the output voltage V_0 .
 - b) An op-amp inverting amplifier circuit is given with $R_{_1}=20~k\Omega$, $R_{_f}=60~k\Omega$, $V_{_{in}}=1V$. Evaluate the output voltage $V_{_O}$. (3 + 2)