

II Semester B.C.A./B.C.A.(DS) Degree Examination, June/July - 2025

(SEP Scheme Freshers) COMPUTER APPLICATION Operating System Concepts

Time: 3 Hours

Maximum Marks: 80

Instructions:

Answer all the Sections.

SECTION-A

I. Answer any Ten questions. Each question carries 2 marks.

 $(10 \times 2 = 20)$

- 1. Write any four examples of operating system.
- Define thread.
- 3. What is CPU scheduling?
- 4. What is race condition in multiprocessing system?
- 5. What are monitors?
- 6. What is deadlock detection?
- 7. What is segmentation?
- 8. Define logical and physical address space.
- 9. Define virtual memory.
- 10. What is directory structure?
- 11. What is file system implementation?
- 12. Define swap space.

P.T.O.

. 2

SECTION - B

Answer any Six questions. Each question carries 5 marks. H.

 $(6 \times 5 = 30)$

- 13. Differentiate between multiprogramming and multitasking.
- 14. Explain the different approaches to interprocess communication.
- State Reader Writers problem. Explain the solution to the Readers Writers 15. problem.
- 16. Write a note on the following:
 - Binary semaphore
 - Counting semaphore. b)

(3+2)

- 17. Discuss in detail contiguous memory allocation.
- 18. What is page fault? Explain the steps to handle page fault.
- Explain indexed sequential access method.
- 20. Explain layered file system.

SECTION - C

Answer any Three questions. Each question carries 10 marks. $(3 \times 10 = 30)$ III.

21. Consider the following set of process with length of CPU burst time in milliseconds arrived with different arrival time as indicated below.

Process	Arrival Time	CPU Burst-Time
P1	0	6
P2	5	10
P3	7	13
P4	• 11	2
P5	13	6

- Draw Gantt's charts illustrating the execution of these processes using a) FCFS and SJF algorithm.
- Calculate turn-around time and waiting time. b)

- 22. a) Explain the necessary condition for deadlocks.
 - b) Explain the methods of handling deadlock.

(5+5)

- 23. a) What is paging? How paging works?
 - b) Write a note on swapping.

(6+4)

24. Consider a disk queue with I/O request for tracks:
98, 183, 37, 122, 14, 124,65, 67 head starts at position 53. Find the Total Head Movement (THM) using LOOK and C-LOOK disk scheduling algorithm.